首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2415篇
  免费   174篇
  国内免费   179篇
  2024年   4篇
  2023年   41篇
  2022年   42篇
  2021年   72篇
  2020年   89篇
  2019年   91篇
  2018年   105篇
  2017年   57篇
  2016年   78篇
  2015年   88篇
  2014年   150篇
  2013年   140篇
  2012年   124篇
  2011年   190篇
  2010年   159篇
  2009年   171篇
  2008年   196篇
  2007年   129篇
  2006年   117篇
  2005年   96篇
  2004年   76篇
  2003年   56篇
  2002年   59篇
  2001年   42篇
  2000年   41篇
  1999年   43篇
  1998年   30篇
  1997年   22篇
  1996年   27篇
  1995年   21篇
  1994年   29篇
  1993年   19篇
  1992年   20篇
  1991年   17篇
  1990年   24篇
  1989年   10篇
  1988年   17篇
  1987年   7篇
  1986年   11篇
  1985年   9篇
  1984年   13篇
  1983年   4篇
  1982年   6篇
  1981年   6篇
  1980年   5篇
  1979年   3篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
排序方式: 共有2768条查询结果,搜索用时 15 毫秒
81.
The center of diversity of the genus Musa (Musaceae) is in Southeast Asia, a region not studied in detail and where new species and varieties continue to be reported. A new wild banana species, M. chunii Hakki-nen from Yunnan, China is described and illustrated based on observed morphological characteristics in the field. This extremely rare new species was only found in Tongbiguan Nature Reserve, Dehong District, West Yunnan. A key to M. chunii and related taxa is provided. In addition, critical notes regarding M. rubra Kurz identity are given.  相似文献   
82.
Eighty-four pollen samples were obtained for 80 taxa, of which, 13 species and one variety are from sect. Brachycalyx Sweet, 58 species and two varieties from sect. Tsutsusi Sweet, and six species from subgen. Pentanthera (G. Don) Pojarkova, respectively. Pollen morphology of all samples was observed using LM and SEM. Pollen grains are revealed to be spheroidal and tetrahedral with tricolporate apertures. Pollen sizes of subgen. Tsutsusi (Sweet) Pojarkova range from 37.67 μm to 61.06μm, and the exine sculptures are more or less compactly granulated. Pollen sizes are significantly different between sect. Brachycalyx and sect. Tsutsusi of subgen. Tsutsusi. Rhododendron tashiroi Maxim. of sect. Tsusiopsis Sleumer shows a close affinity to sect. Brachycalyx. Pollen size and exine are consistent with general morphology in differentiating species in sect. Tsutsusi. Rhododendron huadingense B. Y. Ding & Y. Y. Fang, once placed as a member of sect. Brachycalyx, should be considered as a species in subgen. Pentanthera.  相似文献   
83.
Yan Xu  Yuejin Wang 《Biologia》2009,64(1):102-106
Heat shock protein 90 (Hsp90), known as molecular chaperone, is involved in protein folding and assembly in the cell. In the present study, a full-length cDNA named Vitis pseduoreticulta heat shock protein 90 (VpHsp90) (GenBank accession Number:EU239815), encoding a heat shock protein 90, was obtained by degenerated primers and 3′-and 5′-RACE from Vitis pseudoreticulata according to our previously obtained EST sequence (GenBnak accession number:DV182112), putatively known as Hsp90. Comparison of VpHsp90 sequence has revealed that an open reading frame (ORF) consists of 2,100 bp nucleotides and the translated proteins of 699 amino acid residues. The molecular mass of VpHsp90 calculated from the deduced amino acid sequence was 80.2 kDa, Isolectric Point was 4.893, which is in close proximity of Hsp90. The maximum similarity of VpHsp90 at nucleotides level (85%) and protein level (96%) was found to be with Nicotiana tabacum. Phylogenetic tree analysis at both the nucleotides and amino acids levels indicates that Vitis pseduoreticulata, Nicotiana tabacum, and Arabidopsis thaliana Hsp90 sequences comprise one clade, which is closely related to Oryza sativa, Hordeum vulgare and Triticum aestivum Hsp90s. It may be reasonably concluded that VpHsp90 possesses the ancestral gene of Hsp90 similar to that of higher plant species.  相似文献   
84.
We previously isolated a Saccharomyces cerevisiae mutant (HsTnII), which displays 40% reduced chronological lifespan as compared to the wild type (WT). In this study, we found HsTnII cultures to be characterized by fragmented and dysfunctional mitochondria, and by increased initiation of apoptosis during chronological aging as compared to WT. Expression of genes encoding subunits of mitochondrial electron transport chain and ATP synthase is significantly downregulated in HsTnII, and as a consequence, HsTnII is not able to respire ethanol. All these data confirm the importance of functional mitochondria and respiration in determining yeast chronological lifespan and apoptosis.  相似文献   
85.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   
86.
87.
To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice by partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43-amino-acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle, and the ELC protein distribution in Tg-Δ43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Δ43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force-generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Δ43 mice and the mutant hearts develop a phenotype of nonpathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Δ43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin.  相似文献   
88.
The simian virus 40 (SV40) outer shell is composed of 72 pentamers of VP1. The core of the VP1 monomer is a β-barrel with jelly-roll topology and extending N- and C-terminal arms. A pentapeptide hinge, KNPYP, tethers the C-arm to the VP1 β-barrel core. The five C-arms that extend from each pentamer insert into the neighbouring pentamers, tying them together through different types of interactions. In the mature virion, this element adopts either of six conformations according to their location in the capsid. We found that the hinge is conserved among 16 members of the Polyomaviridae, attesting to its importance in capsid assembly and/or structure. We have used site-directed mutagenesis to gain an understanding into the structural requirements of this element: Y299 was changed to A, F, and T, and P300 to A and G. The mutants showed reduction in viability to varying degrees. Unexpectedly, assembly was reduced only to a small extent. However, the data showed that the mutants were highly unstable. The largest effect was observed for mutations of P300, indicating a role of the proline in the virion structure. P300G was more unstable than P300A, indicating a requirement for rigidity of the pentapeptide hinge. Y299T and Y299A were more defective in viability than Y299F, highlighting the importance of an aromatic ring at this position. Structural inspection showed that this aromatic ring contacts C-arms of neighbouring pentamers. Computational modelling predicted loss of stability of the Y mutants in concordance with the experimental results. This study provides insights into the structural details of the pentapeptide hinge that are responsible for capsid stability.  相似文献   
89.
Stretching force can induce conformational changes of proteins and is believed to be an important biological signal in the mechanotransduction network. Tenascin-C is a large extracellular matrix protein and is subject to stretching force under its physiological condition. Regulating the mechanical properties of the fibronectin type III domains of tenascin-C will alter its response to mechanical stretching force and thus may provide the possibility of regulating the biological activities of tenascin-C in living cells. However, tuning the mechanical stability of proteins in a rational and systematic fashion remains challenging. Using the third fibronectin type III domain (TNfn3) of tenascin-C as a model system, here we report a successful engineering of a mechanically stronger extracellular matrix protein via engineered metal chelation. Combining steered molecular dynamics simulations, protein engineering and single-molecule atomic force microscopy, we have rationally engineered a bihistidine-based metal chelation site into TNfn3. We used its metal chelation capability to selectively increase the unfolding energy barrier for the rate-limiting step during the mechanical unfolding of TNfn3. The resultant TNfn3 mutant exhibits enhanced mechanical stability. Using a stronger metal chelator, one can convert TNfn3 back to a state of lower mechanical stability. This is the first step toward engineering extracellular matrix proteins with defined mechanical properties, which can be modulated reversibly by external stimuli, and will provide the possibility of using external stimuli to regulate the biological functions of extracellular matrix proteins.  相似文献   
90.
Antizyme (Az) is a highly conserved key regulatory protein bearing a major role in regulating polyamine levels in the cell. It has the ability to bind and inhibit ornithine decarboxylase (ODC), targeting it for degradation. Az inhibitor (AzI) impairs the activity of Az. In this study, we mapped the binding sites of ODC and AzI on Az using Ala scan mutagenesis and generated models of the two complexes by constrained computational docking. In order to scan a large number of mutants in a short time, we developed a workflow combining high-throughput mutagenesis, small-scale parallel partial purification of His-tagged proteins and their immobilization on a tris-nitrilotriacetic-acid-coated surface plasmon resonance chip. This combination of techniques resulted in a significant reduction in time for production and measurement of large numbers of mutant proteins. The data-driven docking results suggest that both proteins occupy the same binding site on Az, with Az binding within a large groove in AzI and ODC. However, single-mutant data provide information concerning the location of the binding sites only, not on their relative orientations. Therefore, we generated a large number of double-mutant cycles between residues on Az and ODC and used the resulting interaction energies to restrict docking. The model of the complex is well defined and accounts for the mutant data generated here, and previously determined biochemical data for this system. Insights on the structure and function of the complexes, as well as general aspects of the method, are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号